
BAAO 2016/17 Solutions and Marking Guidelines 

 

Note for markers: 

 Answers to two or three significant figures are generally acceptable. The solution may give more in 

order to make the calculation clear. 

 There are multiple ways to solve some of the questions; please accept all good solutions that arrive 

at the correct answer. If a candidate gets the final (numerical) answer then allow them all the marks 

for that part of the question (as indicated in red), so long as there are no unphysical / nonsensical 

steps or assumptions made. 

 

Q1 - Martian GPS         [Total = 20] 

 

a. Given that the Earth’s sidereal day is 23h 56 mins, calculate the orbital radius of a GPS satellite. 

Express your answer in units of R⊕. 

 

  
 

 
                                 [1] 

   
   

  
        

  ⊕  

   

 

   
                           

   

 
   [1] 

               

          ⊕     [1] [3] 

 

b. How long would it take a radio signal to travel directly between a satellite and its closest neighbour 

in its orbital plane (assuming they’re evenly spaced)? How far would a car on a motorway (with a 

speed of 30 m s-1) travel in that time? [This can be taken to be a very crude estimate of the positional 

accuracy of the system for that car.]. 

 

Closest neighbour in orbital plane should be 90° away (since evenly spaced) so can use Pythagoras 

                                [1] 

 

Time for the signal to travel that distance: 

  
 

 
 

        

        
                  [1]      [2] 

 

Distance travelled by a car on a motorway in that time: 

                              [1]      [1] 

  

[In practice the positional accuracy of a GPS system is much harder to calculate; at low speeds it is 

typically a function of fluctuations and reflections of the signal within the atmosphere, as well as the 

presence of objects that might block the signal] 

 

 

 

 

 

 



c. Using suitable calculations, explore the viability of a 24-satellite GPS constellation similar to the one 

used on Earth, in a semi-synchronous Martian orbit, by considering: 

i. Would the moons prevent such an orbit? 

 

  
 

 
                                   [1] 

   
   

  
        

    
 

   

 
   

                           

   

 
   [1] 

                  [1] [3] 

This is about ½ the distance to Diemos and about 3500 km (about RM) away from Phobos so 

the moons should not provide a problem for any GPS satellite constellation [1] [1] 

 

ii. How would the GPS positional accuracy compare to Earth? 

 

(Using similar reasoning to part b.) 

                     [1] 

            (or         )     [1] [2] 

 The positional accuracy is about twice as good as on Earth  [1] [1] 

 

iii. What would the receiving angle of each satellite’s antenna need to be, and what would be 

the associated satellite footprint? By comparing these with the ones utilised by Earth’s GPS, 

make a final comment on the viability of future Martian GPS. 

 

Receiving angle: 

          
  

 
         

        

        
   [1] 

                  [1] [2] 

 

The area of a 'zone' of a sphere is 2πRh where h is the radial 

height of the zone. From the geometry of the situation: 

     
   

 
                [1] 

                     [1] 

 

Fraction of surface area: 
            

                    
 

            

    
         

  [1] [3] 

 

 Receiving angle similar to Earth's so can use current GPS satellite technology [0.5] 

 Satellite footprint similar to Earth's so should get sufficient coverage  [0.5] 

 Martian GPS system is viable       [1] [2] 

 

 

  

 

 



 

Q2 - Hohmann Transfer        [Total = 20] 

 

a. Show that vorb in low Earth orbit (LEO; about 200 km above the surface) is about 8 km s-1. This is an 

estimate of the Δv the rockets need to provide for the spacecraft to reach LEO. 

 

      
  ⊕

 ⊕  
    

                    

                
     [1] 

                                       [1] [2] 

[In practice a Δv of 8 km s-1 assumes no external forces, but atmospheric drag can increase the 

necessary Δv by 1.3 – 1.8 km s-1. When travelling between objects in space, however, such drag 

forces are absent and so the Δv calculated is much more accurate] 

 

b. Derive expressions for ΔvA and ΔvB by comparing their circular orbital speeds with their transfer orbit 

speeds. Simplify your final expressions to include G, M⨀, rA and rB only. 

 

         
 

  
 

 

 
       

 

  
   

   

  
    

  

 
       [1] 

 

But 2a = rA + rB 

      
   

  
    

   

     
     

   

  
  

   

     
       [1] [2] 

Similarly: 

     
   

  
      

   

     
   

   

  
    

   

     
      [1] [1] 

 

[These equations have been written so that the change in speed is positive, however give full credit 

for reversed signs (so long as they are consistent)] 

 

c. Approximating Mars' orbit as circular with a radius of 1.52 AU, calculate the Δv to go from Earth LEO 

to Mars i.e. Δv = |ΔvA|+|ΔvB|. Compare your answer to the Δv to reach Earth LEO. 

 

       
                    

         
  

      

      
     

                                  [1] 

 

       
                    

              
    

   

      
   

                                  [1] 

 

               

                       [1] [3] 

 

This is less than the Δv to get into LEO       [1] [1] 

(So most of the effort needed in going to Mars simply comes from leaving Earth) 

 



[The Δv calculated here would be for the spacecraft to enter a circular orbit around the Sun at the 

same distance as Mars, but this would not constitute landing – the extra Δv to get to the Martian 

surface increases the total for the whole transfer to roughly 8 km s-1 (same as to get into LEO). Other, 

more complicated routes can be taken, some of which offer substantial efficiencies so the Δv for the 

trip can be much lower (although the time taken to complete the manoeuvre will be longer, and the 

Δv to reach LEO will still be the biggest single step)] 

 

d. Derive an expression for the total time spent on the transfer orbit, tH, and calculate it for an Earth to 

Mars transfer. Give your answer in months. (Use 1 month = 30 days). 

 

From Kepler's third law:    
   

  
   

Since the spacecraft only covers half of the ellipse the time on the journey is half the period, and 

given that 2a = rA + rB then: 

       
       

 

    
        [1] [1] 

    
                    

 

                      
              [1] 

 

                    [1] [2] 

 

e. Hence calculate the direct distance between Earth and Mars at the moment the spacecraft reaches 

Mars. How long would it take a radio message from the spacecraft to reach Earth? 

 

Initially Earth is at A. When the spacecraft reaches B (after 8.56 

months), the Earth has moved round the Sun in its orbit and is 

now at A'. 

 

Angle between A' and B: 

   
      

  
                       [1] 

 

Using the cosine rule: 

     
    

             

                                 [1] [2] 

Since radio waves travel at the speed of light the time taken by the message is: 

  
         

        
                             [1] [1] 

 

[In practice, due to the eccentricity of Mars' orbit, the signal transmission time varies depending on 

the year the spacecraft was launched. When the rover Curiosity arrived at Mars the engineers 

described the landing as 7 minutes of terror, since the signal from the spacecraft would take 14 

minutes to reach Earth but the time to transverse the Martian atmosphere was only 7 minutes 

(hence the process had to be completely automated)] 

 

 

 

 

 

 

 

 

A' 

θ 

x 



f. How long would any astronauts on board the spacecraft need to wait until they could use a Hohmann 

transfer orbit to return to Earth? Hence calculate the total duration of the mission. 

 

During the transfer the Earth moves by            , so the 

spacecraft should launch from Mars when Earth is at position A" 

(exhibiting symmetry with when it arrived). 

 

Since the planets move anti-clockwise in this diagram the angle 

covered by Earth from A' to A" is                [1] 

 

From Kepler's third law, the period of Mars                      [1] 

 

Therefore, the relative angular velocity of Earth if Mars' motion is subtracted out is: 

     
    

  
 

    

       
                   [1] 

(allow any equivalent units e.g. 168° year-1, 9.38 × 10-8 rad s-1 etc.) 

 

Consequently, the time the astronauts need to wait for Earth to get from position A' to A" is: 
   

    
                                [1] [4] 

 

Thus the total duration of a return mission to Mars is: 

                                                     [1] [1] 

  

[Shorter missions are possible, but would require a greater Δv and hence need much more fuel - any 

future mission will have to balance the cost (and mass) of more fuel on a fast trip with the cost (and 

mass) of more supplies on a slow trip] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A" 
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Q3 - Starkiller Base        [Total = 20] 

 

a. Assume the Sun was initially made of pure hydrogen, carries out nuclear fusion at a constant rate 

and will continue to do so until the hydrogen in its core is used up. If the mass of the core is 10% of 

the star, and 0.7% of the mass in each fusion reaction is converted into energy, show that the Sun’s 

lifespan on the main sequence is approximately 10 billion years. 

 

Time on main sequence = total nuclear energy available / luminosity 

    
    

  
 

    

  
 

      

  
  

                              
 

         
   [1] 

                                   [1] [2] 

                          

 

b. The Starkiller Base is able to stop nuclear fusion in the Sun’s core 

i.  At its current luminosity, how long would it take the Sun to radiate away all of its 

gravitational binding energy? (This is an estimate of how long it would take to drain a whole 

star when radiatively charging the superweapon.) 

 

 Time radiating energy = total gravitational binding energy / luminosity 

     
  

  
 

    
 

     
 

                       
 

                    
     [1] 

                                      [1] [2] 

 

ii. How does your value compare to the main sequence lifetime of the Sun calculated in part a.? 

 

This is much shorter than tMS       [1] [1] 

 

iii. Comment on whether there were (or will be) any events in the life of the Sun with a timescale 

of this order of magnitude. 

 

An event in the Sun's life that happened on a timescale of this order of magnitude is the 

gravitational collapse of the protostar before it joined the main sequence [1] [1] 

 

[The Sun will also be on the asymptotic giant branch (AGB) for a similar order of magnitude 

of time - this is when the core is completely carbon / oxygen (but no longer undergoing 

fusion) and there is a spherical shell of helium burning happening just outside the core (with 

a shell outside that of hydrogen burning). Credit this answer too if a student mentions it.] 

 

c. In practice, the gravitational binding energy of the Earth is much lower than that of the Sun, and so 

the First Order would not need to drain the whole star to get enough energy to destroy the Earth. 

Assuming the weapon is able to channel towards it all the energy being radiated from the Sun’s 

entire surface, how long would it take them to charge the superweapon sufficiently to do this? 

 

Time charging the weapon = total energy needed / rate of energy transfer 

        
 ⊕

  
 

   ⊕
 

  ⊕  
 

                       
 

                    
    [1] 

                               [1] [2] 

(So it would only take a week to absorb enough energy from the Sun to destroy the Earth!) 



d. Taking the Starkiller Base’s ice planet to have a diameter of 660 km, show that the Sun can be safely 

contained, even if it was fully drained. 

 

Need to work out the Schwarzschild radius for the Sun, and compare it to the size of the base 

   
    

  
 

                      

           
                        [1] [1] 

 

(About 100 times) Smaller than the radius of the base   the Sun can be safely contained [1] [1] 

 

e. The Starkiller Base wants to destroy all the planets in a stellar system on the far side of the galaxy 

and so drains 0.10 M⨀ from the Sun to charge its weapon. Assuming that the U per unit volume of 

the Sun stays approximately constant during this process, calculate: 

i. The new luminosity of the Sun. 

 

Need to use the mass-luminosity relation for main sequence stars (L ∝ M4) to work out the 

luminosity of a 0.9 M⨀ star (since that is the new mass of the Sun) 

 ∝         
    

  
  

    

  
 
 

  

                                              [1] [1] 

 

ii. The new radius of the Sun. 

 

Energy density = U / V = constant 

 

 
 

    

  
 

 
   

 
    

     
∝

  

  
               

  
 

  
  

    
 

    
        

  

  
  

    

    
    [1] 

      
    

  
                                   [1] [2] 

 

iii. The new temperature of the surface of the Sun (current T⨀ = 5780 K), and suggest (with a 

suitable calculation) what change will be seen in terms of its colour. 

 

Need to use the Stephan-Boltzmann Law to get the new temperature and then Wien's Law 

to determine the effect on the peak wavelength (and hence the colour) 

               
    

  
  

    

  
 
 

 
    

  
 
 

  

          
 
    
  

 

 
    
  

 
 

 

    
    

   

 
        [1] 

                           [1] [2] 

          
         

    
 

         

    
                        [1] [1] 

This is a longer wavelength than the current peak (500 nm) so the Sun is redder [1] [1] 

 

 

 

 



f. Assume that at the moment of destruction of the Starkiller Base the mass of the new star formed is 

equal to the mass drained from the Sun (0.10 M⨀). Derive an expression for the main sequence 

lifetime in terms of stellar mass, and hence calculate the main sequence lifetime of this new star. 

 

We can combine the mass-luminosity relation with the expression we used in part a. 

    ∝
 

 
         ∝             ∝

 

  ∝         [1] [1] 
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                                [1] [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Q4 - Hanny's Voorwerp        [Total = 20] 

 

a. Given that Hubble’s constant is measured as H0 = 70 km s-1 Mpc-1, calculate the distance to the galaxy 

(in Mpc). 

 

Need to turn the redshift into a recessional velocity and then combine with Hubble's Law 

  
 

 
                                                     [1] 

     
 

  
 

      

  
             [1] [2] 

 

b. Calculate the power (luminosity) of the source required to completely ionize the Voorwerp (assumed 

to be spherical), given that the mass of a hydrogen atom is 1.67 × 10-27 kg and the ionization energy 

of hydrogen is 13.6 eV, where 1 eV = 1.60 × 10-19 J. 

 

Given we know the radius of the cloud (10 kpc) and the mass (1011 M⨀) we can work out the number 

density of hydrogen atoms 

                           
 

   

 
                    

 

 
     

     
 

  
 
  

 
         [1] 

           
       

  
 
 

 
 

 
   

   
              

          
 
 

         

 

 
                     

   [1] 

                              [1] 

(watch that the units of α are converted correctly to SI) 

 

The luminosity can then be calculated as we know the energy of each photon 

                                          [1] 

                                 [1] [5] 

 

(Allow full credit for interpreting the 10 kpc 'size' of the cloud to mean its diameter rather than its 

radius, giving S* = 2.39 × 1056 photons s-1 and L = 5.20 × 1038 W)    

[Working out S* directly may prove difficult for some calculators as (M/mH)2 may exceed their largest 

power of ten, in which case students should work out √S* and then square it later.] 

 

c. The gravitational potential energy of the material falling to radius R, which in this case is a black hole 

with radius equal to the Schwarzschild radius, RS = 2GM/c2, at a mass accretion rate          , is 

converted into radiation with an efficiency of . Show that the power (luminosity) output of the SMBH 

is given by   
 

 
     . 

 

We know the gravitational potential energy of a particle of mass m at the Schwarzschild radius is the 

same as the kinetic energy it has gained moving from infinity to that point, so 

  
   

  
 

   
   

  

 
 

 
          [1] 

Given that a fraction η is converted into radiation and the given mass accretion rate then 

    
  

  
   

 

 

  

  
   

 

 
            [1] [2] 

 



(So the maximum energy you can get from a black hole is half the rest mass energy of the material 

falling in – this is a much more efficient process for generating energy than the 0.7% you get from 

nuclear fusion in stars, which in themselves are much more efficient than chemical reactions!) 

 

d. The typical mass accretion rate onto an active SMBH is ∼2 M⨀ yr-1 and the typical efficiency is η = 

0.1. Calculate the typical luminosity of a quasar. Compare the luminosity of the quasar with the 

power needed to ionize the Voorwerp. 

 

Need to convert the mass accretion rate into kg s-1 and then put into the formula 

  
 

 
       

 

 
      

           

               
                [1] 

                    [1] [2] 

 

The luminosity of the quasar is high enough to ionize the Voorwerp   [1] [1] 

 

e. Calculate the projected physical separation, rp, between the galaxy and the Voorwerp. 

 

Since the angle is so small, we can use the small angle approximation for tan θ ≈ θ 

                                      [0.5] 

                              [0.5] 

                                 [1] [2] 

 

f. Derive an expression for the difference in the light travel time between photons travelling directly to 

Earth from the galaxy and photons reflected off the Voorwerp first. Give your formula as a function 

of rp and θ, where θ is the angle between the lines of sight to the Earth and to the centre of the 

Voorwerp as measured by an observer at the centre of IC 2497. (For example θ = 90° would 

correspond to the galaxy and Voorwerp both being the exact same distance from the Earth, and so 

the projected distance rp is therefore also the true distance between them.) 

 

Given the small angular separation we can treat the light 

rays from the galaxy to Earth and from the Voorwerp to 

Earth as essentially parallel, and so the difference in light 

travel time comes from the extra distance travelled in being 

reflected off the Voorwerp 

 

Relevant diagram, suitably labelled   [2] 

Extra distance = x + y 

       
  

          
 

  

    
     [1] 
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      [1] [5] 

             
  

     
            (alternative form) 

 

[Allow any equivalent formula, for example expressing it in terms of csc θ and cot θ, so long as some 

attempt has been made to simplify it. It is quicker and simpler to derive if θ is assumed to be acute – 

we show it this way in case students see that the angle is obtuse from the next part of the question 

and want to have a consistent picture throughout] 



g. High precision measurements showed that the Voorwerp is slightly further away than the galaxy, and 

so θ = 125°. Use this with your expression from the previous part of the question to estimate an upper 

limit for the number of years that have passed since the quasar was last active. 

 

    
  

     
           

                  

                
            

                     [0.5] 

                       [0.5] [1] 

 

(This is remarkably recent on astronomical timescales!) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Q5 - Imaging an Exoplanet       [Total = 20] 

 

a. Calculate the maximum angular separation between the star and the planet, assuming a circular 

orbit. Give your answer in arcseconds (where 3600 arcseconds = 1°). 

 

   
    

 

   

 
   

                                               

   

 
  [1] 

                            [1] 

     
 

 
 

        

               
                       [0.5] 

                         [0.5] [3] 

 

b. Determine the luminosity of the star and hence calculate the flux received on the Earth (in W m-2) 

from both the star and the planet. Use them to work out the contrast ratio and thus the apparent 

magnitude of the planet. Assume the planet reflects half of the incident light and that  ⨀ = 4.83. 
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                          [1] [2] 

 

    
     

       
 

          

          
               [1] [1] 

                                         [1] 

                                       [1] [2] 

 

[Since we only know the minimum radius of the exoplanet it could be larger and hence brighter, 

however it may also reflect less than half the incident light from the star and so be fainter – in 

practice the numbers used here are an optimistic estimate and it is more likely to be fainter.] 

(Accepted alternative methods: if they use Stephan-Boltzmann's Law then L = 5.88 × 1023 W, fstar = 

2.92 × 10-11 W m-2, and fplanet = 3.39 × 10-18 W m-2, though the contrast ratio and magnitude should be 

the same. Also accept if they assume only the day side is able to reflect and hence the apparent 

magnitude brightens to 27.9) 

 

 

 

 



c. Verify that the HST (which is diffraction limited since it's in space) would be sensitive enough to 

image the planet in the visible, but is unable to resolve it from its host star (take λ = 550 nm). 

 

      
     

 
 

             

   
                                       [0.5] 

Since θHST > θmax then the HST can't resolve it      [0.5] [1] 

Apparent magnitude of planet (28.5) is brighter (greater) than limiting magnitude (31) [1] [1] 

 

d. Calculate the exposure time needed for a Keck II image of the exoplanet to have an SNR of 3. Assume 

that the telescope has perfect AO, is observed at the longest wavelength for which the planet can still 

be resolved from the star, all the received flux from the planet consists of photons of that longest 

wavelength , ε = 0.1 and b = 109 photons s-1 (so b >> f). Comment on your answer. 

 

       
     

    
 

            

    
                 [1] 

Photon flux: 

   
       

       
 

       
  

     

 
          

                   

         

                       [1] 

(SB-Law fplanet gives f = 25.4 photons m-2 s-1, and day side reflection increases f by a factor of 2) 

 

Since b >> f we can simplify the denominator of the SNR formula by ignoring the first term, so 

   
      

     
 

      

                 
                [1] [3] 

This is really long (> 50 years!) so it is unlikely Keck will ever be able to directly image it [1] [1] 

(alternative f gives 22.7 ks, and hence the conclusion is that it is feasible) 

 

e. How long an exposure would JWST need in order to get the same SNR as Keck II, again if observed at 

the longest wavelength for which the planet can still be resolved from the star by the telescope? 

(Make similar assumptions about the received flux and use the same value of ε). 

 

(using similar reasoning to the previous part of the question) 

                         [1] 

                              [1] 

(alternative method gives f = 16.5 photons m-2 s-1) 

  

Since b << f we can simplify the denominator of the SNR formula by ignoring the second term, so 

   
    

   
 

  

                  
             [1] [3] 

(alternative method gives t = 0.16 s, and day side reflection decreases t by a factor of 2) 

 

[This is much more reasonable – the optimistic assumptions we have made throughout this question 

mean this is just a lower limit and so the actual exposure time will be longer, perhaps several 

minutes to get a much higher SNR and to compensate for the fact for that the sensitivity is lower at 

970 nm than we have quoted since it varies with wavelength. The main thing that would prevent 

direct observation of the exoplanet by JWST would be if the contrast ratio was much higher than 

calculated here as that would mean the star's light would need to be blocked out by the Near 

Infrared Camera's coronagraph – unfortunately this can only be used at wavelengths too long to 

resolve the system.] 

END OF PAPER 


